organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diethyl 2,6-dimethyl-4-(4-pyridyl)-1,4dihydropyridine-3,5-dicarboxylate

Yumei Li

Department of Chemistry, Dezhou University, Shandong 253023, People's Republic of China

Correspondence e-mail: liyumei_dzc@yahoo.com.cn

Received 20 April 2010; accepted 10 May 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.128; data-to-parameter ratio = 13.9.

In the title compound, $C_{18}H_{22}N_2O_4$, the dihedral angle between the two rings is 87.90 (6)°. The mean devation of the atoms in the dihydropyridine plane is 0.082 (3) Å. In the crystal, molecules are linked by intermolecular N-H···N hydrogen bonds, generating chains.

Related literature

For general background to the biological activity of 1,4dihydropyridine derivatives, see: Gaudio *et al.* (1994).

Experimental

Crystal data	
$C_{18}H_{22}N_2O_4$ M = 330.38	a = 11.5550 (2) Å b = 13.1707 (2) Å
Monoclinic, $P2_1/n$	c = 11.8020 (2) Å

 $\beta = 92.705 (2)^{\circ}$ $V = 1794.11 (5) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\rm min} = 0.990, T_{\rm max} = 0.993$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.128$ S = 1.033152 reflections 227 parameters 9122 measured reflections 3152 independent reflections 2308 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$

 $\mu = 0.09 \text{ mm}^{-1}$

 $0.12 \times 0.10 \times 0.08 \; \mathrm{mm}$

T = 296 K

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.15$ e Å⁻³ $\Delta \rho_{\rm min} = -0.19$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2N\cdots N1^{i}$	0.86 (2)	2.13 (2)	2.984 (2)	171.8 (18)
Symmetry code: (i) x	$-\frac{1}{2}, -y + \frac{1}{2}, z +$	1/2.		

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2336).

References

Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Gaudio, A. C., Korolkovas, A. & Takahata, Y. (1994). J. Pharm. Sci. A83, 1110–1115.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, o1334 [doi:10.1107/S1600536810016934]

Diethyl 2,6-dimethyl-4-(4-pyridyl)-1,4-dihydropyridine-3,5-dicarboxylate

Y. Li

Comment

The synthesis of 1,4-dihydropyridine derivatives has attracted continuous research interest due to various vasodilator, antihypertensive, bronchodilator, heptaprotective, anti-tumor, anti-mutagenic, geroprotective and anti-diabetic agents (Gaudio *et al.*, 1994).

The molecular structure of the title compound is shown in Fig 1. The dihedral angle between the two rings is 87.90 (6) °. The mean devation of the dihydropyridine plane is 0.082 (3)Å. The intermolecular hydrogen bonding of N(2)—H(2A)···N(1) leads to a consolidation of the structure (Fig. 2; Table 1).

Experimental

Diethyl 2,6-dimethyl-4-(4-pyridyl)-1,4-dihydropyridine-3,5-dicarboxylate was purchased from Jinan Henghua Science & Technology Co. Ltd. Diethyl 2,6-dimethyl-4-(4-pyridyl)-1,4-dihydropyridine-3,5-dicarboxylate (1 mmoL 0.39 g) was dissolved in 20 ml ethanol, which was evaporated in an open flask at room temperature. One week later, yellow block crystals suitable for the X-ray experiment were obained. Anal. $C_{18}H_{22}N_2O_4$: C, 65.37; H, 6.66; N, 8.48 %. Found: C, 65.32; H, 6.45; N, 8.39 %.

Refinement

. .

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and $U_{iso} = 1.2U_{eq}(C)$. For methyl groups C—H distances were 0.96 Å and $U_{iso} = 1.5U_{eq}(C)$. Two of the methyl groups were found to have two sets of methyl hydrogens and were refined with AFIX 127 and major part occupanices that refined to 0.60 (2) and 0.59 (2) for C17 and C18, respectively. The hydrogen atom attached to the hydropyridine nitrogen was freely refined.

Diethyl 2,6-dimethyl-4-(4-pyridyl)-1,4-dihydropyridine-3,5-dicarboxylate

Crystal data	
$C_{18}H_{22}N_2O_4$	F(000) = 704
$M_r = 330.38$	$D_{\rm x} = 1.223 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2361 reflections
a = 11.5550 (2) Å	$\theta = 2.3 - 24.5^{\circ}$
b = 13.1707 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 11.8020 (2) Å	T = 296 K
$\beta = 92.705 \ (2)^{\circ}$	Block, yellow

 $V = 1794.11 (5) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII CCD diffractometer	3152 independent reflections
Radiation source: fine-focus sealed tube	2308 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -11 \rightarrow 13$
$T_{\min} = 0.990, \ T_{\max} = 0.993$	$k = -15 \rightarrow 15$
9122 measured reflections	$l = -14 \rightarrow 13$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.128$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_0^2) + (0.0645P)^2 + 0.2873P]$ where $P = (F_0^2 + 2F_c^2)/3$
3152 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
227 parameters	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $0.12 \times 0.10 \times 0.08 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordin	nates and isotropic or ea	uivalent isotropic dis	placement parameters ($Å^2$?)
	inics and isomopic of cy	<i>uivaieni isoiropie ais</i>	pracement parameters [11	1

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
O1	0.33862 (13)	0.01201 (15)	0.15684 (14)	0.0917 (6)	
O2	0.50534 (12)	-0.07176 (10)	0.16753 (11)	0.0597 (4)	
O3	0.80150 (10)	0.08444 (10)	0.58574 (10)	0.0539 (4)	

O4	0.81559 (11)	-0.01782 (11)	0.43654 (12)	0.0630 (4)	
N1	0.82662 (14)	0.18151 (15)	0.07048 (14)	0.0616 (5)	
N2	0.47955 (13)	0.18372 (12)	0.43985 (13)	0.0472 (4)	
H2N	0.4391 (17)	0.2279 (15)	0.4751 (16)	0.058 (6)*	
C1	0.76016 (19)	0.23648 (17)	0.13643 (17)	0.0626 (6)	
H1	0.7595	0.3066	0.1272	0.075*	
C2	0.69267 (17)	0.19512 (14)	0.21726 (16)	0.0527 (5)	
H2	0.6482	0.2374	0.2610	0.063*	
C3	0.69017 (13)	0.09216 (12)	0.23420 (13)	0.0376 (4)	
C4	0.75744 (16)	0.03451 (15)	0.16496 (15)	0.0525 (5)	
H4	0.7586	-0.0358	0.1717	0.063*	
C5	0.82298 (17)	0.08201 (18)	0.08560 (17)	0.0631 (6)	
Н5	0.8674	0.0415	0.0399	0.076*	
C6	0.76250 (15)	0.04661 (14)	0.48574 (14)	0.0431 (4)	
C7	0.91311 (16)	0.04589 (17)	0.62964 (17)	0.0601 (5)	
H7A	0.9739	0.0664	0.5806	0.072*	
H7B	0.9116	-0.0277	0.6328	0.072*	
C8	0.9350 (2)	0.0879 (2)	0.7438 (2)	0.0949 (9)	
H8A	0.9386	0.1606	0.7394	0.142*	
H8B	1.0072	0.0622	0.7754	0.142*	
H8C	0.8734	0.0684	0.7911	0.142*	
C9	0.43413 (16)	0.00167 (16)	0.20127 (15)	0.0514 (5)	
C10	0.4620 (2)	-0.13703 (19)	0.0762 (2)	0.0795 (7)	
H10A	0.4463	-0.0974	0.0079	0.095*	
H10B	0.3905	-0.1694	0.0967	0.095*	
C11	0.5496 (3)	-0.2133 (3)	0.0566 (3)	0.1604 (18)	
H11A	0.6205	-0.1805	0.0384	0.241*	
H11B	0.5236	-0.2562	-0.0053	0.241*	
H11C	0.5624	-0.2536	0.1238	0.241*	
C12	0.61631 (13)	0.04467 (13)	0.32414 (13)	0.0373 (4)	
H12	0.6308	-0.0286	0.3252	0.045*	
C13	0.48786 (14)	0.06167 (13)	0.29414 (14)	0.0405 (4)	
C14	0.42771 (14)	0.13185 (13)	0.34979 (14)	0.0424 (4)	
C15	0.58549 (14)	0.15725 (13)	0.49037 (14)	0.0425 (4)	
C16	0.65116 (13)	0.08686 (12)	0.44024 (13)	0.0381 (4)	
C17	0.61248 (18)	0.21403 (17)	0.59884 (16)	0.0614 (6)	
H17A	0.6361	0.1669	0.6575	0.092*	0.60 (2)
H17B	0.5447	0.2499	0.6205	0.092*	0.60(2)
H17C	0.6739	0.2615	0.5878	0.092*	0.60 (2)
H17D	0.6004	0.2854	0.5864	0.092*	0.40 (2)
H17E	0.6918	0.2023	0.6233	0.092*	0.40 (2)
H17F	0.5625	0.1907	0.6561	0.092*	0.40 (2)
C18	0.30334 (15)	0.16157 (17)	0.32620 (17)	0.0584 (5)	
H18A	0.2596	0.1466	0.3913	0.088*	0.59 (2)
H18B	0.2721	0.1242	0.2620	0.088*	0.59 (2)
H18C	0.2989	0.2330	0.3102	0.088*	0.59 (2)
H18D	0.2941	0.1892	0.2511	0.088*	0.41 (2)
H18E	0.2816	0.2116	0.3804	0.088*	0.41 (2)
H18F	0.2548	0.1028	0.3321	0.088*	0.41 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0504 (9)	0.1327 (15)	0.0895 (11)	0.0078 (9)	-0.0249 (9)	-0.0411 (11)
O2	0.0560 (8)	0.0669 (9)	0.0552 (8)	-0.0058 (7)	-0.0078 (7)	-0.0177 (7)
O3	0.0388 (7)	0.0738 (9)	0.0480 (7)	0.0130 (6)	-0.0106 (6)	-0.0075 (6)
O4	0.0505 (8)	0.0732 (9)	0.0643 (9)	0.0217 (7)	-0.0080 (7)	-0.0164 (7)
N1	0.0482 (10)	0.0823 (13)	0.0547 (10)	-0.0138 (9)	0.0065 (8)	0.0115 (9)
N2	0.0358 (8)	0.0622 (10)	0.0436 (9)	0.0121 (7)	-0.0003 (7)	-0.0067 (8)
C1	0.0689 (14)	0.0555 (12)	0.0637 (13)	-0.0175 (11)	0.0050 (11)	0.0075 (10)
C2	0.0552 (12)	0.0487 (11)	0.0551 (11)	-0.0048 (9)	0.0113 (9)	-0.0026 (9)
C3	0.0289 (8)	0.0479 (10)	0.0355 (9)	-0.0015 (7)	-0.0038 (7)	-0.0004 (7)
C4	0.0520 (11)	0.0542 (12)	0.0522 (11)	0.0069 (9)	0.0121 (9)	0.0029 (9)
C5	0.0491 (12)	0.0853 (17)	0.0563 (13)	0.0091 (11)	0.0171 (10)	0.0050 (11)
C6	0.0383 (10)	0.0507 (10)	0.0401 (10)	0.0015 (8)	0.0004 (8)	0.0003 (8)
C7	0.0367 (10)	0.0759 (14)	0.0662 (13)	0.0114 (10)	-0.0129 (9)	-0.0020 (11)
C8	0.0617 (15)	0.144 (2)	0.0762 (16)	0.0252 (16)	-0.0278 (13)	-0.0237 (17)
C9	0.0433 (11)	0.0666 (13)	0.0441 (11)	-0.0083 (9)	0.0010 (9)	-0.0025 (9)
C10	0.0852 (17)	0.0833 (17)	0.0684 (14)	-0.0116 (14)	-0.0149 (13)	-0.0286 (13)
C11	0.172 (4)	0.139 (3)	0.164 (3)	0.065 (3)	-0.066 (3)	-0.101 (3)
C12	0.0350 (9)	0.0402 (9)	0.0366 (9)	-0.0001 (7)	0.0009 (7)	0.0014 (7)
C13	0.0342 (9)	0.0510 (10)	0.0362 (9)	-0.0058 (8)	0.0011 (7)	0.0040 (8)
C14	0.0329 (9)	0.0555 (11)	0.0386 (9)	-0.0012 (8)	0.0011 (7)	0.0066 (8)
C15	0.0363 (9)	0.0543 (11)	0.0366 (9)	0.0025 (8)	-0.0002 (8)	0.0015 (8)
C16	0.0324 (9)	0.0443 (10)	0.0374 (9)	0.0013 (7)	-0.0002(7)	0.0008 (7)
C17	0.0537 (12)	0.0806 (14)	0.0493 (11)	0.0159 (10)	-0.0048 (9)	-0.0170 (10)
C18	0.0339 (10)	0.0825 (14)	0.0586 (12)	0.0053 (9)	-0.0019 (9)	0.0038 (11)
Geometric pa	arameters (Å, °)					
01 C0		1 207 (2)	C0	C12	1 46	(5)
$01 - C^{2}$		1.207(2) 1.342(2)	C10	C11	1.40	(2)
$02 - C^{10}$		1.542(2) 1.449(2)	C10-	H10A	0.97	2(4)
02 - C10		1.339(2)	C10-	-H10R	0.97	00
03 - C7		1.559(2) 1.458(2)	C10-	-H11A	0.97	00
03-07		1.438(2)	C11-	-H11R	0.96	00
N1-C5		1.211(2) 1.324(3)	C11-	-H11C	0.96	00
N1-C1		1.324(3)	C12_	-C16	1.51	5 (2)
N1 - C1 N2 - C14		1.333(3) 1.377(2)	C12-	-C13	1.51	5(2)
N2 C14		1.377(2) 1 381(2)	C12	_H12	0.98	00
N2 015		0.86(2)	C12	-C14	1 34	6 (2)
C1-C2		1.373(3)	C14-	-C18	1.51	3(2)
C1H1		0.9300	C14-	-C16	1.30	2(2)
C_{2}		1.371(2)	C15	_C17	1.55	(2)
С2 С3		0.9300	C13-	_H17A	0.06	
$C_{2} = C_{12}$		1 381 (2)	C17=	_H17B	0.90	00
C_{3} C_{1}^{12}		1.501(2) 1.527(2)	C17-	_H17C	0.90	00
C_{4} C_{5} C_{12}		1.327(2) 1 382(3)	C17=	-H17D	0.90	00
CT CJ		1.502 (5)	$C_{1}/=$	111/D	0.90	

supplementary materials

	0.0200		0.0(00
C4—H4	0.9300		0.9600
С5—Н5	0.9300		0.9600
C6—C16	1.4/0 (2)	CI8—HI8A	0.9600
C7—C8	1.467 (3)	C18—H18B	0.9600
С/—Н/А	0.9700		0.9600
С7—Н7В	0.9700	C18—H18D	0.9600
C8—H8A	0.9600	C18—H18E	0.9600
С8—Н8В	0.9600	C18—H18F	0.9600
С8—Н8С	0.9600		
C9—O2—C10	116.92 (16)	H11A—C11—H11B	109.5
C6—O3—C7	116.02 (14)	C10-C11-H11C	109.5
C5—N1—C1	115.87 (17)	H11A—C11—H11C	109.5
C14—N2—C15	123.55 (16)	H11B—C11—H11C	109.5
C14—N2—H2N	118.7 (13)	C16—C12—C13	111.71 (13)
C15—N2—H2N	116.8 (13)	C16—C12—C3	110.18 (13)
N1—C1—C2	123.51 (19)	C13—C12—C3	110.37 (13)
N1—C1—H1	118.2	C16—C12—H12	108.2
C2—C1—H1	118.2	C13—C12—H12	108.2
C3—C2—C1	120.68 (18)	C3—C12—H12	108.2
С3—С2—Н2	119.7	C14—C13—C9	121.67 (16)
С1—С2—Н2	119.7	C14—C13—C12	120.43 (15)
C2—C3—C4	116.16 (16)	C9—C13—C12	117.87 (15)
C2—C3—C12	121.52 (15)	C13—C14—N2	120.11 (15)
C4—C3—C12	122.32 (15)	C13—C14—C18	126.85 (16)
C3—C4—C5	119.59 (18)	N2-C14-C18	113.03 (16)
C3—C4—H4	120.2	C16—C15—N2	119.26 (15)
С5—С4—Н4	120.2	C16—C15—C17	128.02 (15)
N1—C5—C4	124.17 (19)	N2—C15—C17	112.72 (15)
N1—C5—H5	117.9	C15—C16—C6	125.97 (15)
С4—С5—Н5	117.9	C15-C16-C12	121.10 (14)
04	121.74 (15)	C6—C16—C12	112.88 (14)
04—C6—C16	122.14(16)	C15—C17—H17A	109.5
O3-C6-C16	116 11 (15)	C15—C17—H17B	109.5
03 - 07 - 08	107.81 (17)	H17A - C17 - H17B	109.5
$O_3 = C_7 = H_7 A$	110.1	C15-C17-H17C	109.5
C8—C7—H7A	110.1	H17A - C17 - H17C	109.5
$O_3 = C_7 = H_7 B$	110.1	H17B-C17-H17C	109.5
C8-C7-H7B	110.1	C15_C17_H17D	109.5
	108.5	C15_C17_H17E	109.5
$\Pi/A = C / = \Pi/B$	108.5	H17D C17 H17E	109.5
$C_{1} = C_{0} = H_{0} R_{0}$	109.5	$\frac{111}{D} = \frac{11}{C17} = \frac{117E}{H17E}$	109.5
	109.5	H17D C17 H17F	109.5
110A - Co - 110D	109.5	H17E C17 H17E	109.5
	109.5	$\frac{11}{E} = \frac{11}{H}$	109.5
	109.5	C14 $C16$ $H18A$	109.5
	109.3	$U_{14} - U_{10} - H_{10}B$	109.5
01 - 09 - 02	120.8/(1/) 127.62(10)	$\Pi 10A - U 10 - \Pi 10B$	109.5
01 - 09 - 013	127.03 (19)		109.5
02 - 09 - 013	111.50 (15)	H18A - C18 - H18C	109.5
02—C10—C11	108.0 (2)	H18B—C18—H18C	109.5

supplementary materials

O2—C10—H10A C11—C10—H10A O2—C10—H10B C11—C10—H10B H10A—C10—H10B C10—C11—H11A C10—C11—H11B	110.1 110.1 110.1 110.1 108.4 109.5 109.5	C14—C18—H18D C14—C18—H18E H18D—C18—H18E C14—C18—H18F H18D—C18—H18F H18E—C18—H18F	109.5 109.5 109.5 109.5 109.5	; ; ; ; ;
Hydrogen-bond geometry (Å, °) D—H···A N2—H2N···N1 ⁱ Symmetry codes: (i) x -1/2, $-y$ +1/2, z +1/	<i>D</i> —Н 0.86 (2) /2.	H…A 2.13 (2)	<i>D</i> … <i>A</i> 2.984 (2)	<i>D</i> —H <i>…A</i> 171.8 (18)